428 research outputs found

    Alzheimer's disease therapeutic research: the path forward

    Get PDF
    The field of Alzheimer's disease therapeutic research seems poised to bring to clinic the next generation of treatments, moving beyond symptomatic benefits to modification of the underlying neurobiology of the disease. But a series of recent trials has had disappointingly negative results that raise questions about our drug development strategies. Consideration of ongoing programs demonstrates difficult pitfalls. But a clear path forward is emerging. Successful strategies will utilize newly available tools to reconsider issues of diagnosis, assessment and analysis, facilitating the study of new treatments at early stages in the disease process at which they are most likely to yield major clinical benefits

    Advances in Alzheimer’s Disease Drug Development

    Get PDF

    Recent developments in Alzheimer's disease therapeutics

    Get PDF
    Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed

    Applications of neuroimaging to disease-modification trials in Alzheimer's disease.

    Get PDF
    Critical to development of new therapies for Alzheimer's disease (AD) is the ability to detect clinical or pathological change over time. Clinical outcome measures typically used in therapeutic trials have unfortunately proven to be relatively variable and somewhat insensitive to change in this slowly progressive disease. For this reason, development of surrogate biomarkers that identify significant disease-associated brain changes are necessary to expedite treatment development in AD. Since AD pathology is present in the brain many years prior to clinical manifestation, ideally we want to develop biomarkers of disease that identify abnormal brain structure or function even prior to cognitive decline. Magnetic resonance imaging, fluorodeoxyglucose positron emission tomography, new amyloid imaging techniques, and spinal fluid markers of AD all have great potential to provide surrogate endpoint measures for AD pathology. The Alzheimer's disease neuroimaging initiative (ADNI) was developed for the distinct purpose of evaluating surrogate biomarkers for drug development in AD. Recent evidence from ADNI demonstrates that imaging may provide more sensitive, and earlier, measures of disease progression than traditional clinical measures for powering clinical drug trials in Alzheimer's disease. This review discusses recently presented data from the ADNI dataset, and the importance of imaging in the future of drug development in AD

    A Humanin Derivative Reduces Amyloid Beta Accumulation and Ameliorates Memory Deficit in Triple Transgenic Mice

    Get PDF
    Humanin (HN), a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer\u27s disease (AD)-related cytotoxicities, including exposure to amyloid beta (Abeta), in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN\u27s functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APPswe, tauP310L, and PS-1M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD
    corecore